H(t)=-16t^2+19.4

Simple and best practice solution for H(t)=-16t^2+19.4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+19.4 equation:



(H)=-16H^2+19.4
We move all terms to the left:
(H)-(-16H^2+19.4)=0
We get rid of parentheses
16H^2+H-19.4=0
a = 16; b = 1; c = -19.4;
Δ = b2-4ac
Δ = 12-4·16·(-19.4)
Δ = 1242.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1242.6}}{2*16}=\frac{-1-\sqrt{1242.6}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1242.6}}{2*16}=\frac{-1+\sqrt{1242.6}}{32} $

See similar equations:

| 46=-4x+2 | | (1/(x^2))-5x=((x+7)/x)-1 | | x​2​​−8=−2x | | O.6(d+3)=3d | | 30/y+4=10 | | 25x+36=-114 | | 2v+v-17=(v-1) | | 4x(9)=73 | | 11x+4=12x-3 | | 5x-20x^7=0 | | 4(2x-5)+5=(3x+6) | | Y=3t+6 | | 5b-1=-46 | | (7x÷5)-1=8 | | -6x^3+5x+x^5=0 | | 7x/5-1=8 | | -6x^3+5x+x^3=0 | | 18s^2+72=0 | | 3^w*2^4w=12 | | 24=xx48 | | Y³+y²-2y=0 | | Y+y-2y=0 | | 42y=78 | | −5x^​3​​+6x−x^​5​=0 | | −5x​3​​+6x−x​5​=0 | | 7-x+12=36 | | (x+5)/7=1-(x+3)/3 | | 4x2+x=0 | | 6w=35+w | | -2x=1/2+5 | | 6x-29=73 | | 3/4x=16+-18 |

Equations solver categories